Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biomol Struct Dyn ; : 1-10, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1996958

ABSTRACT

The COVID-19 pandemic, which has already claimed millions of lives, continues to pose a serious threat to human health, requiring the development of new effective drugs. Non-structural proteins of SARS-CoV-2 play an important role in viral replication and infection. Among them, NSP16 (non-structured protein 16) and its cofactor NSP10 (non-structured protein 10) perform C2'-O methylation at the 5' end of the viral RNA, which promotes efficient virus replication. Therefore, the NSP16-NSP10 complex becomes an attractive target for drug development. Using a multi-step virtual screening protocol which includes Lipinski's rule, docking, steered molecular dynamics and umbrella sampling, we searched for potential inhibitors from the PubChem and anti-HIV databases. It has been shown that CID 135566620 compound from PubChem is the best candidate with an inhibition constant in the sub-µM range. The Van der Waals interaction was found to be more important than the electrostatic interaction in the binding affinity of this compound to NSP16-NSP10. Further in vitro and in vivo studies are needed to test the activity of the identified compound against COVID-19.Communicated by Ramaswamy H. Sarma.

2.
J Phys Chem B ; 126(25): 4669-4678, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1900409

ABSTRACT

The emergence of the variant of concern Omicron (B.1.1.529) of the severe acute respiratory syndrome coronavirus 2 has aggravated the Covid-19 pandemic due to its very contagious ability. The high infection rate may be due to the high binding affinity of Omicron to human cells, but both experimental and computational studies have yielded conflicting results on this issue. Some studies have shown that the Omicron variant binds to human angiotensin-converting enzyme 2 (hACE2) more strongly than the wild type (WT), but other studies have reported comparable binding affinities. To shed light on this open problem, in this work, we calculated the binding free energy of the receptor binding domain (RBD) of the WT and Omicron spike protein to hACE2 using all-atom molecular dynamics simulation and the molecular mechanics Poisson-Boltzmann surface area method. We showed that Omicron binds to human cells more strongly than the WT due to increased RBD charge, which enhances electrostatic interaction with negatively charged hACE2. N440K, T478K, E484A, Q493R, and Q498R mutations in the RBD have been found to play a critical role in the stability of the RBD-hACE2 complex. The effect of homogeneous and heterogeneous models of glycans coating the viral RBD and the peptidyl domain of hACE2 was examined. Although the total binding free energy is not sensitive to the glycan model, the distribution of per-residue interaction energies depends on it. In addition, glycans have a little effect on the binding affinity of the WT RBD to hACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
3.
Healthcare (Basel) ; 9(6)2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1270020

ABSTRACT

Adopting a cross-sectional study design, we aimed to examine the prevalence of psychological problems in different healthcare workers during the COVID-19 pandemic in the hospitals in these COVID-19 hotspots (Da Nang city and Quang Nam province) and to explore the socioeconomic and COVID-19 control-related factors that are associated with various psychological problems. A total of 611 healthcare workers were included in the final analysis from 1 August 2020 to 31 August 2020. The prevalence of anxiety, depression, insomnia, and overall psychological problems was 26.84%, 34.70%, 34.53%, and 46.48%, respectively. The prevalence rates of anxiety were approximately equal amongst the groups of healthcare workers, and moderate-to-severe anxiety was the most common in physicians (11.11%). The prevalence of depression was the highest in nurses (38.65%) and moderate-to-severe depression was mainly found in physicians (11.81%). The prevalence rates of insomnia were 34.03% in physicians, 36.20% in nurses, and 31.21% in technicians; in particular, the rate of moderate-to-severe insomnia was higher in physicians and nurses compared to technicians. The prevalence of overall moderate-to-severe psychological problems was the highest among physicians (14.58%), followed by nurses (12.58%) and technicians (9.22%). Statistically significant associated factors of current psychological problems were the occupations of physicians or nurses, less than 1 year of experience, university education, living with 4-5 people, reporting 1000-5000 m distance between home and workplace, participating in the COVID-19 control for less than 1 week, being under social isolation at home, being affected a lot by the community, reporting inadequate equipment in current workplace conditions, frequently working in the department directly in contact with the COVID-19 patients, and feeling anxious, stressed, or sad about current works. Present findings can provide valuable evidence for the policymakers and managers to adopt supportive, encouraging, motivational, protective, training, and educational interventions into healthcare workforce in other parts of Vietnam.

4.
J Phys Chem B ; 124(50): 11337-11348, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1065784

ABSTRACT

The outbreak of a new coronavirus SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2) has caused a global COVID-19 (coronavirus disease 2019) pandemic, resulting in millions of infections and thousands of deaths around the world. There is currently no drug or vaccine for COVID-19, but it has been revealed that some commercially available drugs are promising, at least for treating symptoms. Among them, remdesivir, which can block the activity of RNA-dependent RNA polymerase (RdRp) in old SARS-CoV and MERS-CoV viruses, has been prescribed to COVID-19 patients in many countries. A recent experiment showed that remdesivir binds to SARS-CoV-2 with an inhibition constant of µM, but the exact target has not been reported. In this work, combining molecular docking, steered molecular dynamics, and umbrella sampling, we examined its binding affinity to two targets including the main protease (Mpro), also known as 3C-like protease, and RdRp. We showed that remdesivir binds to Mpro slightly weaker than to RdRp, and the corresponding inhibition constants, consistent with the experiment, fall to the µM range. The binding mechanisms of remdesivir to two targets differ in that the electrostatic interaction is the main force in stabilizing the RdRp-remdesivir complex, while the van der Waals interaction dominates in the Mpro-remdesivir case. Our result indicates that remdesivir can target not only RdRp but also Mpro, which can be invoked to explain why this drug is effective in treating COVID-19. We have identified residues of the target protein that make the most important contribution to binding affinity, and this information is useful for drug development for this disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/metabolism , Adenosine Monophosphate/metabolism , Alanine/metabolism , Algorithms , Humans , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Static Electricity
5.
J Phys Chem B ; 124(34): 7336-7347, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-752578

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, was declared a pandemic by the World Health Organization in March 2020. Genetically, SARS-CoV-2 is closely related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries from 2002 to 2003. Given the significant morbidity and mortality rate, the current pandemic poses a danger to all of humanity, prompting us to understand the activity of SARS-CoV-2 at the atomic level. Experimental studies have revealed that spike proteins of both SARS-CoV-2 and SARS-CoV bind to angiotensin-converting enzyme 2 (ACE2) before entering the cell for replication. However, the binding affinities reported by different groups seem to contradict each other. Wrapp et al. (Science 2020, 367, 1260-1263) showed that the spike protein of SARS-CoV-2 binds to the ACE2 peptidase domain (ACE2-PD) more strongly than does SARS-CoV, and this fact may be associated with a greater severity of the new virus. However, Walls et al. (Cell 2020, 181, 281-292) reported that SARS-CoV-2 exhibits a higher binding affinity, but the difference between the two variants is relatively small. To understand the binding mechnism and experimental results, we investigated how the receptor binding domain (RBD) of SARS-CoV (SARS-CoV-RBD) and SARS-CoV-2 (SARS-CoV-2-RBD) interacts with a human ACE2-PD using molecular modeling. We applied a coarse-grained model to calculate the dissociation constant and found that SARS-CoV-2 displays a 2-fold higher binding affinity. Using steered all-atom molecular dynamics simulations, we demonstrate that, like a coarse-grained simulation, SARS-CoV-2-RBD was associated with ACE2-PD more strongly than was SARS-CoV-RBD, as evidenced by a higher rupture force and larger pulling work. We show that the binding affinity of both viruses to ACE2 is driven by electrostatic interactions.


Subject(s)
Betacoronavirus/chemistry , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL